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We show that the modified partitioning procedure can be applied to study the spherical
and nonspherical Stark effect in the hydrogen atom and the spherical quadratic Zeeman
effect in H−, the helium atom and He-like ions: Li+, Be++, etc. We present ground-state
energy values for λ (in a.u.) in the interval 0.001 6 λ 6 0.2 (a.u. = 5.142 · 109 volts/cm)
and for magnetic field γ (in a.u.) in the interval 0.1 6 γ 6 1.0 (a.u. = 2.353 · 109 gauss).
We compare our results to values available in the literature; they are, in general, better than
those obtained by other methods.

1. Introduction

The study of atoms in magnetic and electric fields is a subject of interest in
atomic physics [8–10,12–14]. This problem has drawn the interest of many authors,
not only because of its physical implications but also as a test bench for a great variety
of approximate quantum methods [1,12–14,23].

Recently we have presented a reformulation of the partitioning procedure [20]
and applied our equations (called modified partitioning procedure, MPP) to study the
hydrogen atom in a strong magnetic field (Zeeman effect). Here, we apply the MPP
equations to Stark problem in the hydrogen atom and to the spherical quadratic Zeeman
effect in helium-like ions: H−, He, Li+, Be++, etc. So we extend the MPP to the case
of two-electron systems and analyze its behavior in these new situations. The MPP is
an analytic method and was developed to determine the eigenvalues and eigenkets of
Schrödinger’s equation explicitly. It differs from the original development of the par-
titioning approach in two aspects: (i) in the MPP the partitioning technique is applied
directly to the auxiliary problem H0|ϕl〉 = E0

l |ϕl〉 (H = H0 + V), supposed resolved,
and (ii) as reference ket the MPP uses the eigenket |Ψl〉 of H instead of |ϕl〉. In
consequence, differently from Löwdin’s development [20,21], the reduced resolvent T
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in our approach does not depend on H and we can obtain a set of nonlinear algebraic
equations for the wave operator matrix elements wsl. Hence we can determine El
directly in terms of wsl and Vsl, potential matrix elements.

This paper is organized as follows: in section 2 we present a résumé of the
modified partitioning procedure and apply to spherical and nonspherical Stark effect
and to Zeeman effect. Section 3 contains our results and conclusions.

2. Modified partitioning procedure

The exact solution of an atom in electric or magnetic field consists, of course, in
finding eigenvalues El and eigenkets |Ψl〉 of the equation

H|Ψl〉 = El|Ψl〉, (1)

where

H = K + V0 + V = H0 + V (2)

with K – kinetic energy operator, V0 – electron–nucleus interaction operator, and
V – electron–electron and electron–external field interaction operators.

By the partitioning technique procedure we consider equation (1) and

H0|ϕl〉 = E0
l |ϕl〉 (3)

with |ϕl〉, E0
l known and |Ψl〉, El to be determined.

Using MPP (see [20] for details) we introduce the self-adjoint modified projection
operators Q and P which define certain subspaces Ha and Hb, respectively, in the total
Hilbert space H . They satisfy the relations

Q2 = cQ, Q+ = Q, QP = PQ = 0, (4)

P2 = cP, P+ = P, P = c−Q (5)

and are constructed as

Q = |Ψl〉〈Ψl|, P = c− |Ψl〉〈Ψl| (6)

with c = 〈Ψl|Ψl〉 and H = Ha ⊕Hb.
With the operators Q and P, we define the reduced resolvent

T = P
[
αQ + P(ε−H0)P

]−1P (7)

and the operator

w = Q + TH0Q. (8)

Then, we have, after some algebraic calculation, that

|Ψl〉 = (1− TV)−1|ϕl〉 = w|ϕl〉 (9)
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and

El = E0
l + 〈ϕl|Vw|ϕl〉/〈ϕl|w+w|ϕl〉. (10)

Equations (9) and (10) are the fundamental relations of the modified partitioning
technique. The problem of finding the eigenvalues El and the eigenkets |Ψl〉 from
equations (9), (10), however, is not trivial one because it is necessary to know the
modified wave operator matrix elements wsl = 〈ϕs|w|ϕl〉, with w = (1− TV)−1. We
adopt then the development presented in [20], that is, we consider the relations

w = 1 + TVw,

P
(
E0
l −H0

)
T = P,

〈Ψl| = 〈ϕl|w+,∑
k |ϕk〉〈ϕk| = 1,

where {|ϕk〉} = {|ϕ1〉, |ϕ2〉, . . . , |ϕl〉, . . . , |ϕs〉, . . .} is the orthonormal complete set of
eigenkets of H0, and we obtain (if we use a finite set of eigenfunctions) for l 6= s
(l fixed and s = 1, 2, . . . ,N ) that

(
E0
l −E0

s

)
wslwll − wll

N∑
k=1

Vskwkl + wsl

N∑
k=1

Vlkwkl = 0 (11)

with

wll =
N∑
k=1

w2
kl. (12)

Equations (11) and (12) constitute an algebraic system in the variables wsl. The
number of equations in this system is equal to the number of variables wsl. As a
consequence, we determine wsl and we write from equations (9) and (10) that

|Ψl〉=
N∑
k=1

wkl|ϕk〉, (13)

El =E0
l +

N∑
k=1

Vlkwkl/wll, (14)

where N is the number of eigenkets of H0 we have considered in the set {|ϕk〉} and
Vlk = 〈ϕl|V|ϕk〉.

Equations (13), (14) are the solution for equation (1) by the MPP technique. It
is interesting to note that equation (14) is not a perturbative expansion in V; the value
of El depends on the basis set {|ϕk〉} chosen and the number N of basis functions
used, only. This fact allows to study atoms in interaction with intense and super-intense
fields.
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In following subsection we discuss the application of MPP to Stark and Zeeman
effects.

2.1. Modified partitioning procedure applied to Stark effect

We consider the spherical and nonspherical Stark effect in the hydrogen atom.
In this case we have for V0 and V in equations (1) and (2)

V0 = −1
r

, V =

{
λr ≡ V1 for the spherical Stark effect,
λr cos θ ≡ V2 for the nonspherical Stark effect.

The set {|ϕk〉} can be composed by the eigenfunctions of the hydrogen atom, that is
(with the usual notation)

|ϕk〉 ≡ |nlm〉 = Rnl(r)Ylm(θ,ϕ) (15)

with n = 1, 2, . . . , l = 1, 2, . . . ,n− 1, −l 6 m 6 l; but we can use also an arbitrary
basis set, i.e.,

|ϕk〉 ≡ |nlm,α〉 = Pnl(αr)Ylm(θ,ϕ) (16)

obtained from functions (15) using the transformation 1/n → α, where α is a varia-
tional parameter to be determined for each value of λ.

Equations (11) and (12) are applied directly when we use the set of basis functions
{|ϕk〉} formed by the eigenfunctions of H0. For the use of set (16), a little calculation
shows that we have for El, as a function of α,

El =
N∑
k=1

(
α2Klk + αV0

lk +
1
α

Vlk

)
wkl, (17)

where Klk, V0
lk and Vlk are matrix elements of the operators defined in the expres-

sion (2), for α = 1. With equation (17) we determine for each λ an optimized value
for α using the condition

∂El
∂α

= 0, (18)

that together with the expression

wll

N∑
k=1

(
α2Klk+αV0

lk+
1
α

Vlk

)
wkl−wsl

N∑
k=1

(
α2Klk+αV0

lk+
1
α

Vlk

)
wkl = 0, (19)

which corresponds to equation (11), and with

wll =
N∑
k=1

w2
kl (20)

constitutes, in this case, the MPP algebraic system of nonlinear equations to obtain the
variables wkl and α [20].
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2.2. Modified partitioning procedure applied to Zeeman effect

To Zeeman effect we consider a helium-like ion with nuclear charge z. Then,
we have

H = H0 + V,

where H0 is in atomic units:

H0 = −1
2

(
∇2

1 +∇2
2

)
− z

r1
− z

r2
(21)

with ri the spatial coordinate of the ith electron. The spherical quadratic Zeeman
effect and the electron–electron interaction is represented by additional terms

V =
1

12
γ2(r2

1 + r2
2

)
+

1
|r1 − r2|

. (22)

The spherical symmetry of this problem leads us to choose the spatial part |φk〉 of its
solution to be expanded in the basis function set{

|ϕk〉0
}
≡
{
D

1
2

[1± P12]
∑
m1,m2

〈l1l2m1m2|LM〉|n1l1m1〉0|n2l2m2〉0

with L and M fixed

}
, (23)

where D is a normalization factor (D = 1 for equivalent electrons and D = 1
√

2 for the
other cases), L(L+1) and M are the eigenvalues of the orbital angular momentum L2

and its projection along z-direction Lz , respectively; 〈l1l2m1m2|LM〉 are the Clebsh–
Gordan coefficients, P12 is the permutation operator, leading to the interchange of the
particles numbered 1 and 2. The kets |nilimi〉0 (i = 1, 2) are one-particle functions
obtained from the eigenfunctions |nilimi〉 of the hydrogen-like ions: H, He+, Li++,
etc. after the transformation z/ni → α and a subsequent orthonormalization procedure.
The parameter α is introduced in order to optimize the basis set (23). Our calculation
is realized for the singlet state (L = 0, M = 0, S (spin eigenvalue) = 0, parity =
positive). Hence, in the set (23) we take L = 0, M = 0 and the sign +. In this case,
Zeeman effect, correspondent to equation (17) we have

El =
N∑
k=1

(
α2Klk + αV0

lk +
1
α2 Vlk

)
wkl. (24)

For the sake of completeness we calculate and present in tables 7 and 8 the MPP
results for the spherical quadratic Zeeman effect in H atom. For this, we have

H0 = −1
2
∇2 − 1

r
and V =

1
12
γ2r2. (25)



6 P.G. Logrado, J.D.M. Vianna / Partitioning technique procedure revisited II

3. Results and conclusions

3.1. About the Stark effect in the H atom

In tables 1, 2, 4, and 5 we present an analysis of the ground-state energy conver-
gence by increasing the number N of basis functions, for some electric field values.
We observe oscillations in the energy values for the spherical Stark effect with λ < 0
and for the nonspherical Stark effect. This occurs in reason of the potential well
with barrier associated to these two problems which also implicates in existence of
metastable (quasibound) states. In this case we have taken the lowest value of energy
as definite ground-state value because the MPP is a variational method (see the appen-
dix). In all calculations, for the Stark effect, we have used the basis sets {|nlm〉} and
{|nlm,α〉} with n = 1, 2, 3, . . . and l = 0 and m = 0 for spherical Stark effect (spher-
ical symmetry) and l = 0, 1, 2, . . . ,n − 1 and m = 0 for nonspherical Stark problem
(cylindrical symmetry), since our interest has been the ground state study. We have
limited our results to the values of λ for which we have found a larger number results
to compare (0.001 a.u. 6 λ 6 0.2 a.u; 1 a.u. = 5.142 · 109 volts/cm).

In tables 3 and 6 our results are compared to those obtained by other methods.
They show that: (i) with the basis set {|nlm〉} (noted MPPH) the MPP results, for
low values of λ, are comparable to other procedures, but when λ (negative) increases

Table 1
Ground-state energy values (−E in a.u.) for the spherical Stark effect in the hydrogen
atom for different numbers N of basis functions (15) and some field strength values.

λ \ N 3 4 5 10 14 20

−0.002 5.03004 5.03004 5.03004 5.03004 5.03004 5.03004
−0.004 5.06016 5.06017 5.06017 5.06010 5.06019 5.06018
−0.006 5.09037 5.09039 5.09040 5.09041 5.09041 5.09047
−0.01 5.15108 5.15113 5.15116 5.15125 5.15121 5.15121
−0.02 5.30496 5.30370 5.30537 5.30533 5.30533 5.30533
−0.03 5.46327 5.46312 5.46311 5.46311 5.46311 5.46311
−0.04 5.62498 5.62239 5.63331 5.62776 5.62760 5.62753
−0.08 6.48252 6.45843 6.44822 6.43502 6.43284 6.43165
−0.10 7.25651 7.16916 7.13072 7.08026 7.07185 7.06728

0.05 4.2656 4.2666 4.2670 4.2677 4.2678 4.2679
0.10 3.5461 3.5493 3.5509 3.5532 3.5536 3.5538

Table 2
Ground-state energy values (−E in a.u.) for the nonspherical Stark effect in the
hydrogen atom for different numbers N of basis functions (15) and some field strength

values.

λ \ N 4 6 10 15 20 24

0.06 5.06783 5.07429 5.07658 5.07761 5.07817 5.07838
0.08 5.14916 5.15757 5.15698 5.15557 5.15465 5.15406
0.10 5.31117 5.31092 5.30963 5.30810 5.30702 5.31093
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Table 3
Ground-state energy for the spherical Stark effect (−E in a.u.) calculated with our
equations, using the standard hydrogen atom wave functions (MPPH) and the opti-
mized basis set (MPPα): comparison with the results of Silva and Canuto (SC) [26],

Austin, Killingbeck and Galicia (AKG) [2,15,18] and Killingbeck (K) [16].

λ SC SC AKG K MPPH MPPα

−0.002 0.503006 0.50301 0.503004 0.503006
−0.006 0.509056 0.50906 0.509046 0.509056
−0.010 0.515157 0.51516 0.515121 0.515157
−0.020 0.530664 0.53066 0.530664 0.5307 0.530533 0.530664
−0.030 0.546590 0.54658 0.54659 0.546311 0.546592
−0.040 0.563048 0.56301 0.5631 0.5631 0.563330 0.563067
−0.060 0.598704 0.5979 0.5983 0.598998 0.599334
−0.080 0.639310 0.648252 0.635614
−0.100 0.664333 0.725651 0.677807

0.001 0.498502 0.49850 0.498501 0.498501
0.005 0.492537 0.49254 0.492525 0.492537
0.010 0.485144 0.48514 0.485097 0.485144
0.050 0.428119 0.42807 0.42812 0.4282 0.42679 0.428120
0.070 0.400762 0.4004 0.39809 0.400769
0.100 0.36087 0.36090 0.35537 0.360900
0.150 0.29682 0.29699 0.28468 0.296989

Table 4
Ground-state energy values (−E in a.u.) for the spherical Stark effect in the hydrogen
atom for different numbers N of basis functions (16) and some field strength values.

λ \ N 2 4 6 8 10 14

−0.002 5.03005 5.03006 5.03006 5.03006 5.03006 5.03006
−0.004 5.06024 5.06024 5.06024
−0.006 5.09056 5.09056 5.09056
−0.10 5.15137 5.15157 5.15157 5.15157 5.15157 5.15157
−0.02 5.30569 5.30663 5.30664 5.30664 5.30664 5.30664
−0.03 5.46335 5.46584 5.46591 5.46591 5.46592 5.46592
−0.04 5.62498 5.62239 5.63330 5.62776 5.62760 5.62753
−0.06 5.94171 5.97818 5.99334 5.98943 5.97787 5.96684
−0.08 6.22470 6.34502 6.24474 6.25116 6.35614 6.33477
−0.10 6.77807 6.71199 6.76109 6.58218 6.73954 6.6698

0.05 4.28120 4.28120 4.28120
0.07 4.00769 4.00769 4.00769
0.10 3.60900 3.60900 3.60900
0.15 2.96989 2.96989 2.96989

our results are better, and (ii) with the optimized basis set {|nlm,α〉} (noted MPPα)
our results (table 6) are better than those available in the literature, for all values
of λ.
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Table 5
Ground-state energy values (−E in a.u.) for the nonspherical Stark effect in the
hydrogen atom for different numbers N of basis functions (16) and some field strength

values.

λ \ N 5 10 15 20 25 40

0.05 5.05770 5.05993 5.06089 5.06101 5.06185 5.06113
0.06 5.08402 5.08794 5.09284 5.09408 5.08872 5.08014
0.07 5.11587 5.12610 5.14206 5.13059 5.13072
0.08 5.15362 5.17300 5.07299 5.13521 5.19297 5.17570
0.09 5.19767 5.23222 5.15346 5.19382 5.10444 5.26758
0.10 5.24846 5.30653 5.21714 5.25811 5.19362 5.19853
0.15 5.61349 5.11977 5.65631 5.12856 5.639 5.08440
0.20 6.29867 5.51432 5.25689 5.63013 5.46113 5.69784

Table 6
Ground-state energy for the nonspherical Stark effect (−E in a.u.) calculated with
our equations, using the standard hydrogen atom wave functions (MPPH) and the op-
timized basis set (MPPα): comparison with the results of Hehenberger, McIntoch and
Brändas (HMB) [13], Farrelly and Reinhardt (FR) [6], Benassi and Grecchi (BG) [3]

and Silvestone (S) [28].

λ HMB FR BG S MPPH MPPα

0.05 0.506106 0.506105 0.506105 0.506099 0.505087 0.506341
0.06 0.509203 0.509203 0.509203 0.50918 0.507865 0.509408
0.07 0.513075 0.51294 0.511843 0.514206
0.08 0.517560 0.517561 0.517561 0.5167 0.518001 0.519297
0.09 0.52240 0.5219 0.522807 0.526758
0.10 0.52745 0.527418 0.527418 0.5281 0.531276 0.530653

Table 7
Ground-state energy values (−E in a.u.) for the spherical quadratic Zeeman effect
in the hydrogen atom for different numbers N of basis functions (16) and some field

strength values.

γ \ N 2 4 6 8 10 14

0.1 0.49646 0.49665 0.49752 0.49752 0.49752 0.49752
0.2 0.49032 0.49032 0.49032
0.3 0.47893 0.47893 0.47893
0.5 0.44597 0.44597 0.44597
0.7 0.40264 0.40264 0.40264
1.0 0.30164 0.32378 0.32384 0.32384 0.32384

The application of the MPP to Stark problem confirms its accuracy in the study
of the hydrogen atom in the presence of intense electric and magnetic [20] fields (see
table 8, column LV).
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Table 8
A comparison of the ground-state energy (−E in a.u.) for the H atom calculated with
our equations (MPPα), using the optimized standard wave functions (16), with the re-
sults of Killingbeck (K) [17], Silva and Canuto (SC1) and (SC2) [27], Brandi (B) [4],
Praddaude (P) [24], Le Guillou and Zinn-Justin (LGZJ) [19], Rösner, Wummer,
Herold and Ruder (RWHR) [25], Fonte, Falsaperla, Schiffrer and Stanzial (FFSS) [7],
Hajj (H) [11], Cabib, Fabri and Fiorio (CFF) [5] and Logrado and Vianna (LV) [20].

γ MPPαa Ka SC1a SC2a Bb Pb

0.1 0.49752 0.49752 0.49752 0.49752 0.49752 0.49753
0.2 0.49032 0.49032 0.49031 0.49033 0.49026
0.3 0.47893 0.47893 0.47874 0.47902 0.47850
0.5 0.44597 0.43918 0.44624 0.44203
0.7 0.40264 0.40541 0.39332
1.0 0.32384 0.32384 0.33116 0.27551 0.33117

γ LGZJb RWHRb FFSSb Hb CFFb LVb

0.1 0.497526 0.497526 0.497526 0.49754 0.497526
0.2 0.490382 0.490382 0.49038 0.490382
0.3 0.47920 0.479187
0.5 0.447211 0.44724 0.447211
0.7 0.40571 0.405724
1.0 0.331169 0.331169 0.331169 0.331169 0.33120 0.331169

a Spherical quadratic Zeeman effect [Hz = (γ2/12)r2].
b Quadratic Zeeman effect [Hz = (γ2/8)r2sen2(θ)].

3.2. About the Zeeman effect in H, H−, He, Li+, Be++ etc.

For some magnetic field values γ, in table 7 we present the behavior of the MPP
results for the H atom when the number N of basis functions is increased. Table 8
presents our results (MPPα) and compares our values to those obtained by several
authors. Our results coincide to Killingbeck’s values [17], are better than SC1 [27] and
comparable to SC2 [27]. The SC2 results, however, were obtained using the factorized
wave function approach and perturbation theory; these results, unlike ours, are not
variational ones and present oscillations in the energy values when the size of the used
expansion is modified. As a consequence, there is not a criterion to choose a conclusive
value for E and can occur that E be lower than the ground-state energy. Such a
problem does not occur with the MPP results since the MPP method is variational (see
the appendix). It is interesting to note, as indicated by Silva and Canuto [27], that the
values of E (see table 8) for the spherical quadratic Zeeman effect are a good upper
bound for the energy values of the nonspherical quadratic Zeeman effect.

In table 9 and figure 1, we consider the spherical quadratic Zeeman effect for the
ion H−. Table 9 presents the behavior of the energy values when the number N of
basis functions is changed. We note that the MPP method converges monotonically
for γ = 0.1 a.u. but presents oscillations for bigger values. These oscillations are
usual for unbound states, also observed in the previous case of the Stark problem;
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Table 9
Spherical quadratic Zeeman effect in the H− ion. Behavior of the ground-state energy
(−E in a.u.) with the size N of the basis set (23) for some field strength values γ

(a.u.).

γ \ N 10 20 35 56 84 120

0.1 0.509503 0.510944 0.511081 0.511611 0.511635 0.511818
0.2 0.472426 0.475911 0.473614 0.477785 0.477937 0.477363
0.3 0.424719 0.431 0.436 0.432607 0.433 0.42949
0.4 0.371035 0.376553 0.377288 0.376299
0.5 0.312471 0.319813 0.321072 0.318570

Figure 1. Spherical quadratic Zeeman effect in the H− ion. The behavior of the ground state energy as
a function of the magnetic field γ. —: results of Henry, O’Connell, Smith, Chanmungam and Rajagopal
(HOSC) [12] for the quadratic Zeeman effect Hz = (γ2/8)r2sen2(θ). - -o- -: MPP results for the spherical

quadratic Zeeman effect Hz = (γ2/12)r2.

in fact, the singlet state (L = 0, M = 0, S = 0, parity = positive) is a bound state for
γ 6 0.05 a.u. only [12]. In figure 1 our results are compared with the results of Henry et
al. [12] obtained for the quadratic Zeeman effect (nonspherical effect) using variational
procedure and a basis set composed by Slater’s orbitals. Noticing that the ground-state
energy for the spherical quadratic Zeeman effect is an upper bound to the nonspherical
ground state energy, we can conclude from figure 1 that the ours and Henry et al. [12]
results are in good agreement. In tables 10 and 11 we present the results of the
spherical quadratic Zeeman effect for helium-like ions (z = 2, 3, . . . , 6). An analysis
of the behavior of the ground-state energy E as a function of the number N of basis
functions shows that the MPP converges monotonically (see table 10, where γ =
0.8 a.u.) for all ions (z = 2, 3, . . . , 6). Our results for ground-state energy considering
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Table 10
Spherical quadratic Zeeman effect in the helium-like ions. Analysis of the ground state
energies (−E in a.u.) as a function of N (number of basis functions) or γ = 0.8 a.u.

z is the atomic number (z = 2, 3, . . . , 6) and γ the magnetic field value.

z \ N 10 20 35 56 84 120

2 2.77781 2.78427 2.78476 2.78759 2.78774 2.78823
3 7.22413 7.22964 7.23004 7.23144 7.23152 7.23192
4 13.62163 13.62725 13.62766 13.62911 13.62918 13.62958
5 22.00619 22.01198 22.01241 22.01391 22.01400 22.01440
6 32.38610 32.39203 32.39247 32.39402 32.39410 32.39452

Table 11
Spherical quadratic Zeeman effect in the helium-like ions. Energy of the fundamental

state (−E in a.u.). γ (a.u.) is the magnetic field and z the atomic number.

γ \ z 2 3 4 5 6

0.1 2.900781 7.277931 13.653795 21.964667 32.351392
0.2 2.894902 7.275710 13.652637 22.028552 32.404074
0.3 2.885246 13.650709 22.027371 32.403277
0.4 2.872000 7.266857 13.648012 22.025718 32.402162
0.5 2.855410 7.260249 13.644547 22.023594 32.400728
0.6 2.835912 7.252210 13.640317 22.020998 32.398975
0.7 2.812349 7.242758 13.635326 22.017932 32.396905
0.8 2.788231 7.231919 13.629576 22.014397 32.394517
1.0 2.726766 7.206181 13.615816 22.005922 32.388788

0.1 a.u. 6 γ 6 1.0 a.u. are presented in table 11. Comparisons with other methods
were not accomplished because we have not found in the literature numerical results
for ions with z > 2. However, as the MPP method has presented very good values for
the H and H− systems in uniform magnetic and electric fields, our MPP results for the
He-like ions will be of interest to theoretical and experimental studies of these systems.

Finally we will note that to the field strength values that we have considered the
Coulomb interaction is dominating over the magnetic interaction [22]. To more intense
field, however, one must use another basis set with a predominantly magnetic character
in their spatial factor, as the Landau magnetic wave functions [22], for instance. Works
in this direction are in progress and will be published elsewhere. In this context it is
interesting to note that the MPP equations are general and can be applied in principle
to systems with different forms and (small or large) intensity of the potential V, in
H = H0 + V.
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Appendix

Here, we will show that equations (14) and (17) are equivalent to

El = 〈Ψl|H|Ψl〉/〈Ψl|Ψl〉. (A.1)

For this, we substitute equation (13), i.e.,

|Ψl〉 =
N∑
k=1

wkl|ϕk〉 (A.2)

in expression (A.1), what leads us to

El =

(
N∑
s=1

〈ϕs|w∗sl

)
H

(
N∑
k=1

wkl|ϕk〉
)/{(

N∑
s=1

〈ϕs|w∗sl

)(
N∑
k=1

wkl|ϕk〉
)}

. (A.3)

Then, introducing the unit factor 1 = wsl/wsl at the numerator of equation (A.3) and
summing over k in the denominator, we get

El =
N∑
s=1

|wsl|2
(

N∑
k=1

Hskwkl/wsl

)/
N∑
s=1

|wsl|2 (A.4)

or

El =
N∑
k=1

Hlkwkl/wll, (A.5)

where we have used that

wll =
N∑
s=1

|wsl|2, (A.6)

Hsk = 〈ϕs|H|ϕk〉 (A.7)

and
N∑
k=1

Hlkwkl/wll =
N∑
k=1

Hskwkl/wsl. (A.8)

We must note that relation (A.8) is reduced to equation (11) when we use

Hlk = Klk + V0
lk + Vlk for basis set (15),

and to equation (19) when we use

Hlk = α2Klk + αV0
lk +

1
α

Vlk for basis set (16).

Hence, it follows that (A.1) and (A.5) are equivalent equations. Consequently,
equations (14) and (17) are equivalent to relation (A.1) and our results satisfy the
variation principle with wkl and α as variational parameters.
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