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We show that the modified partitioning procedure can be applied to study the spherical
and nonspherical Stark effect in the hydrogen atom and the spherica quadratic Zeeman
effect in H™, the helium atom and He-like ions: Li™, Bet™, etc. We present ground-state
energy values for X (in au.) in the interval 0.001 < A < 0.2 (au. = 5.142 - 10° volts/'cm)
and for magnetic field  (in au.) in the interval 0.1 < v < 1.0 (au. = 2.353 - 10° gauss).
We compare our results to values available in the literature; they are, in general, better than
those obtained by other methods.

1. Introduction

The study of atoms in magnetic and electric fields is a subject of interest in
atomic physics [8-10,12-14]. This problem has drawn the interest of many authors,
not only because of its physical implications but also as atest bench for a great variety
of approximate quantum methods [1,12-14,23].

Recently we have presented a reformulation of the partitioning procedure [20]
and applied our equations (called modified partitioning procedure, MPP) to study the
hydrogen atom in a strong magnetic field (Zeeman effect). Here, we apply the MPP
equations to Stark problem in the hydrogen atom and to the spherical quadratic Zeeman
effect in helium-like ions: H—, He, Lit, Be™ T, etc. So we extend the MPP to the case
of two-electron systems and analyze its behavior in these new situations. The MPP is
an anaytic method and was developed to determine the eigenvalues and eigenkets of
Schrodinger’s equation explicitly. It differs from the original development of the par-
titioning approach in two aspects: (i) in the MPP the partitioning technique is applied
directly to the auxiliary problem Ho|y;) = Elo|g01> (H = Hp + V), supposed resolved,
and (ii) as reference ket the MPP uses the eigenket |W;) of H instead of |¢;). In
consequence, differently from Lowdin's development [20,21], the reduced resolvent T
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in our approach does not depend on H and we can obtain a set of nonlinear algebraic
equations for the wave operator matrix elements wy;. Hence we can determine E;
directly in terms of wg; and V;, potential matrix elements.

This paper is organized as follows. in section 2 we present a résumé of the
modified partitioning procedure and apply to spherical and nonspherical Stark effect
and to Zeeman effect. Section 3 contains our results and conclusions.

2.  Madified partitioning procedure

The exact solution of an atom in electric or magnetic field consists, of course, in
finding eilgenvalues E; and eigenkets |W;) of the equation

HW;) = E|W), 1)
where
H=K+Vy+V=Hp+V 2

with K — kinetic energy operator, Vo — electron—nucleus interaction operator, and
V — electron—dlectron and electron—external field interaction operators.
By the partitioning technique procedure we consider equation (1) and

Holr) = EPler) ©)

with |¢;), EP known and |W;), E; to be determined.

Using MPP (see[20] for details) we introduce the self-adjoint modified projection
operators Q and P which define certain subspaces H, and H,, respectively, in the total
Hilbert space H. They satisfy the relations

QP*=cQ,  Q"=Q, QP=PQ=0, 4)
P? = P, Pt =P, P=c-Q (5)

and are constructed as
Q = [W) (Wi, P=c— W) (W] (6)

with ¢ = <L|J1’LIJZ> and H = H, ® Hy.
With the operators Q and P, we define the reduced resolvent

T = P[aQ + P(c — Ho)P] 'P @
and the operator
w = Q + THoQ. ®
Then, we have, after some algebraic calculation, that
W) = (1= TV) Her) = wley) ©)
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and
E; = B + (o VWlgr) / (oW wlepy). (10)

Equations (9) and (10) are the fundamenta relations of the modified partitioning
technique. The problem of finding the eigenvalues E; and the eigenkets |W;) from
equations (9), (10), however, is not trivial one because it is necessary to know the
modified wave operator matrix elements w,; = (p,|w|g;), withw = (1 — TV)~L. We
adopt then the development presented in [20], that is, we consider the relations

w=1+TVw,
P(El0 — HO)T =P,

(W] = (@uw,
>k lor) (k| = 1,

where {|¢ox)} = {|v1), [¢2), .-, |@i),- -, |ws), ...} isthe orthonorma complete set of
eigenkets of Hp, and we obtain (if we use a finite set of eigenfunctions) for | # s
(I fixedand s =1,2,...,N) that

N N
(EP = EQWawy — Wi Y VW + Wy Y Vi = 0 (1)
k=1 k=1
with
N
Wy =y Wi (12
k=1

Equations (11) and (12) constitute an algebraic system in the variables w,;. The
number of equations in this system is equa to the number of variables wy;. As a
consequence, we determine wy; and we write from equations (9) and (10) that

N
W) = wiler), (13)
k=1
N
Bi=E) 4+ VWi /W, (14)
k=1

where N is the number of eigenkets of Ho we have considered in the set {|p)} and
Vie = (i Vek).

Equations (13), (14) are the solution for equation (1) by the MPP technique. It
is interesting to note that equation (14) is not a perturbative expansion in V; the value
of E; depends on the basis set {|¢x)} chosen and the number N of basis functions
used, only. Thisfact allows to study atoms in interaction with intense and super-intense
fields.
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In following subsection we discuss the application of MPP to Stark and Zeeman
effects.

2.1. Modified partitioning procedure applied to Sark effect

We consider the spherical and nonspherical Stark effect in the hydrogen atom.
In this case we have for Vo and V in equations (1) and (2)

1 { Ar =V, for the spherica Stark effect,

Vo= s V=19 \rcos = V, for the nonspherical Stark effect.

The set {|¢x)} can be composed by the eigenfunctions of the hydrogen atom, that is
(with the usual notation)

lor) = [ndm) = Rp(r)Ym (9, ) (15)
withn=12,...,1=12,...,n—1, =l <m < [; but we can use aso an arbitrary
basis s, i.e,,

k) = [nim, o) = Py(ar)Yim(9, ¢) (16)

obtained from functions (15) using the transformation 1/n — «, where o is a varia
tional parameter to be determined for each vaue of .

Equations (11) and (12) are applied directly when we use the set of basis functions
{|vr)} formed by the eigenfunctions of Hy. For the use of set (16), a little calculation
shows that we have for E;, as a function of «,

N

1
El = Z <C¥2Klk + aV?k + a Vlk>Wkla (17)
k=1

where K, V?k and V,, are matrix elements of the operators defined in the expres-
sion (2), for a = 1. With equation (17) we determine for each \ an optimized value
for . using the condition

0E;

_— = 1

O« 0, (18)
that together with the expression

N N

1 1

Wy E <C¥2Klk+avlok+avlk>wkl_wsl E <a2Klk—|—(XVlOk+a Vlk>Wkl =0, (19)
k=1 k=1

which corresponds to equation (11), and with

N
W, = ZW%I (20)
k=1

constitutes, in this case, the MPP algebraic system of nonlinear equations to obtain the
variables wy; and « [20].
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2.2. Modified partitioning procedure applied to Zeeman effect

To Zeeman effect we consider a helium-like ion with nuclear charge z. Then,
we have
H=Ho+V,
where Hg is in atomic units:
1 z z
Ho — — = (V2 2y < F 21
0=—5(Vi+V2) S (21)

with r; the spatial coordinate of the ith electron. The spherical quadratic Zeeman
effect and the electron—€lectron interaction is represented by additional terms

1
—17

Y% 2(rf+13) + (22)

r1—r2|
The spherical symmetry of this problem leads us to choose the spatia part |¢y) of its
solution to be expanded in the basis function set

1
{’(Pk>0} = {D > [1+4 Pyy] Z <lll2m1m2]LM>]n1l1m1>o]n2l2m2>o

mi,m2

with L and M fixed}, (23)

where D isanormalization factor (D = 1 for equivalent electronsand D = 1,/2 for the
other cases), L(L+ 1) and M are the eigenvalues of the orbital angular momentum L2
and its projection along z-direction L, respectively; (l1lomimo|LM) are the Clebsh—
Gordan coefficients, P1» is the permutation operator, leading to the interchange of the
particles numbered 1 and 2. The kets |n;l;m;)o (i = 1,2) are one-particle functions
obtained from the eigenfunctions |n;l;m;) of the hydrogen-like ions: H, Het, Litt,
etc. after the transformation z/n; — « and a subsequent orthonormalization procedure.
The parameter « is introduced in order to optimize the basis set (23). Our calculation
is realized for the singlet state (L. = 0, M = 0, S (spin eigenvalue) = 0, parity =
positive). Hence, in the set (23) we take L = 0, M = 0 and the sign +. In this case,
Zeeman effect, correspondent to equation (17) we have

N
1
E, = 2 0 + = .
=y (a Kie + oV + — V1k> Wi (24)
k=1
For the sake of completeness we calculate and present in tables 7 and 8 the MPP
results for the spherical quadratic Zeeman effect in H atom. For this, we have
1

1 1
Ho= —=V2%— = V = — ~22, 2
0 5 " and TR (25)
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3.  Results and conclusions
3.1. About the Sark effect in the H atom

Intables 1, 2, 4, and 5 we present an analysis of the ground-state energy conver-
gence by increasing the number N of basis functions, for some electric field values.
We observe oscillations in the energy values for the spherical Stark effect with A < 0
and for the nonspherical Stark effect. This occurs in reason of the potentia well
with barrier associated to these two problems which also implicates in existence of
metastable (quasibound) states. In this case we have taken the lowest value of energy
as definite ground-state value because the MPP is a variational method (see the appen-
dix). In dl calculations, for the Stark effect, we have used the basis sets {|nim)} and
{Inlm, )} withn =1,2,3,... and [ = 0 and m = O for spherical Stark effect (spher-
icad symmetry) and [ = 0,1,2,...,n — 1 and m = 0O for nonspherica Stark problem
(cylindrical symmetry), since our interest has been the ground state study. We have
limited our results to the values of X for which we have found a larger number results
to compare (0.001 au. < A <02au; 1au =5.142- 10° volts/cm).

In tables 3 and 6 our results are compared to those obtained by other methods.
They show that: (i) with the basis set {|nlm)} (noted MPPH) the MPP results, for
low values of A, are comparable to other procedures, but when A (negative) increases

Table 1
Ground-state energy values (—E in a.u.) for the spherical Stark effect in the hydrogen
atom for different numbers N of basis functions (15) and some field strength values.

AN\ N 3 4 5 10 14 20

—0.002 5.03004 5.03004 5.03004 5.03004 5.03004 5.03004
—0.004 5.06016 5.06017 5.06017 5.06010 5.06019 5.06018
—0.006 5.09037 5.09039 5.09040 5.00041 5.00041 5.00047
—-0.01 5.15108 5.15113 5.15116 5.15125 515121 515121
—0.02 5.30496 5.30370 5.30537 5.30533 5.30533 5.30533
—0.03 5.46327 5.46312 5.46311 5.46311 5.46311 5.46311
—-0.04 5.62498 5.62239 5.63331 5.62776 5.62760 5.62753
—0.08 6.48252 6.45843 6.44822 6.43502 6.43284 6.43165
—0.10 7.25651 7.16916 7.13072 7.08026 7.07185 7.06728
0.05 4.2656 4.2666 4.2670 4.2677 4.2678 4.2679
0.10 3.5461 3.5493 3.5509 3.5532 3.5536 3.5538

Table 2
Ground-state energy values (—F in au.) for the nonspherical Sark effect in the
hydrogen atom for different numbers N of basis functions (15) and some field strength
values.

AN\ N 4 6 10 15 20 24
0.06 5.06783 5.07429 5.07658 5.07761 5.07817 5.07838

0.08 5.14916 5.15757 5.15698 5.15557 5.15465 5.15406
0.10 531117 5.31092 5.30963 5.30810 5.30702 5.31093
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Table 3
Ground-state energy for the spherical Sark effect (—FE in au.) caculated with our
equations, using the standard hydrogen atom wave functions (MPPH) and the opti-
mized basis set (MPP«): comparison with the results of Silva and Canuto (SC) [26],
Austin, Killingbeck and Galicia (AKG) [2,15,18] and Killingbeck (K) [16].

A SC SC AKG K MPPH MPP«
—0.002 0503006 0.50301 0.503004  0.503006
—0.006 0509056  0.50906 0.509046  0.509056
—0.010 0.515157 0.51516 0.515121 0.515157
—0.020 0.530664 0.53066 0.530664 0.5307 0.530533 0.530664
—0.030 0546590 0.54658  0.54659 0.546311  0.546592
—0.040 0563048 056301 0.5631 05631 0563330 0.563067
—0.060 0.598704 0.5979 0.5983 0.598998 0.599334
—0.080 0.639310 0.648252  0.635614
—0.100  0.664333 0.725651  0.677807

0.001 0.498502 0.49850 0.498501 0.498501
0.005 0.492537 0.49254 0.492525 0.492537
0.010 0485144 048514 0.485097  0.485144
0.050 0.428119 0.42807 0.42812 0.4282 0.42679 0.428120
0.070 0.400762 0.4004 0.39809 0.400769
0.100 0.36087 0.36090 0.35537 0.360900
0.150  0.29682 0.29699 0.28468 0.296989
Table 4

Ground-state energy values (—FE in au.) for the spherical Sark effect in the hydrogen
atom for different numbers NV of basis functions (16) and some field strength values.

A\ N 2 4 6 8 10 14

—~0.002 503005 503006 503006 503006 503006  5.03006
—0.004 506024 506024  5.06024
—0.006 509056 509056  5.09056

—0.10 5.15137 5.15157 5.15157 5.15157 5.15157 5.15157
—0.02 5.30569 5.30663 5.30664 5.30664 5.30664 5.30664
—0.03 5.46335 5.46584 5.46591 5.46591 5.46592 5.46592
—-0.04 5.62498 5.62239 5.63330 5.62776 5.62760 5.62753
—0.06 5.94171 5.97818 5.99334 5.98943 5.97787 5.96684
—0.08 6.22470 6.34502 6.24474 6.25116 6.35614 6.33477
—0.10 6.77807 6.71199 6.76109 6.58218 6.73954 6.6698

0.05 4.28120 4.28120 4.28120
0.07 4.00769 4.00769 4.00769
0.10 3.60900 3.60900 3.60900
0.15 2.96989 2.96989 2.96989

our results are better, and (ii) with the optimized basis set {|nim, )} (noted MPP«)
our results (table 6) are better than those available in the literature, for al values
of A.
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Table 5
Ground-state energy values (—F in au.) for the nonspherical Sark effect in the
hydrogen atom for different numbers NV of basis functions (16) and some field strength
values.

AN\ N 5 10 15 20 25 40

0.05 5.05770 5.05993 5.06089 5.06101 5.06185 5.06113
0.06 5.08402 5.08794 5.09284 5.09408 5.08872 5.08014
0.07 5.11587 5.12610 5.14206 5.13059 5.13072
0.08 5.15362 5.17300 5.07299 5.13521 5.19297 5.17570
0.09 5.19767 5.23222 5.15346 5.19382 5.10444 5.26758
0.10 5.24846 5.30653 521714 5.25811 5.19362 5.19853
0.15 5.61349 511977 5.65631 5.12856 5.639 5.08440
0.20 6.29867 5.51432 5.25689 5.63013 5.46113 5.69784

Table 6
Ground-state energy for the nonspherical Sark effect (—F in au.) caculated with
our equations, using the standard hydrogen atom wave functions (MPPH) and the op-
timized basis set (MPP«): comparison with the results of Hehenberger, Mclntoch and
Brandas (HMB) [13], Farrelly and Reinhardt (FR) [6], Benassi and Grecchi (BG) [3]
and Silvestone (S) [28].

A HMB FR BG S MPPH MPP«

0.05 0506106 0506105 0506105 0.506099  0.505087  0.506341
0.06 0509203 0.509203  0.509203  0.50918 0.507865  0.509408

0.07  0.513075 0.51294 0.511843  0.514206
008 0517560 0517561 0517561  0.5167 0.518001  0.519297
0.09  0.52240 0.5219 0.522807  0.526758

0.10  0.52745 0.527418  0.527418  0.5281 0.531276  0.530653

Table 7
Ground-state energy vaues (—F in au.) for the spherical quadratic Zeeman effect
in the hydrogen atom for different numbers N of basis functions (16) and some field
strength values.

Y\ N 2 4 6 8 10 14
0.1 049646 049665 049752 049752 049752  0.49752
0.2 049032 049032  0.49032
03 047893 047893  0.47893
05 044597 044597  0.44597
07 040264 040264  0.40264
10 030164 032378 032384 032384  0.32384

The application of the MPP to Stark problem confirms its accuracy in the study
of the hydrogen atom in the presence of intense electric and magnetic [20] fields (see
table 8, column LV).
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Table 8
A comparison of the ground-state energy (—F in a.u.) for the H atom calculated with
our equations (MPPq), using the optimized standard wave functions (16), with the re-
sults of Killingbeck (K) [17], Silvaand Canuto (SC1) and (SC2) [27], Brandi (B) [4],
Praddaude (P) [24], Le Guillou and Zinn-Justin (LGZJ) [19], Rosner, Wummer,
Herold and Ruder (RWHR) [25], Fonte, Falsaperla, Schiffrer and Stanzia (FFSS) [7],
Hajj (H) [11], Cabib, Fabri and Fiorio (CFF) [5] and Logrado and Vianna (LV) [20].

5 MPPo? K2 sc1? sc2? B® P

0.1 0.49752 0.49752 0.49752 0.49752 0.49752 0.49753
0.2 0.49032 0.49032 0.49031 0.49033 0.49026
0.3 0.47893 0.47893 0.47874 0.47902 0.47850

05  0.44597 0.43918 0.44624 0.44203
07  0.40264 0.40541 0.39332

10 0.32384 0.32384 0.33116 0.27551  0.33117
5 LGZZP RWHR® FFSS HP CFFP LvP
0.1 0.497526  0.497526 0497526 049754  0.497526
0.2  0.490382 0.490382  0.49038  0.490382
0.3 0.47920  0.479187
05 0447211 0.44724  0.447211
0.7 0.40571  0.405724

10 0331169 0.331169 0.331169 0.331169 0.33120 0.331169

2 Spherical quadratic Zeeman effect [H* = (v2/12)r?].
P Quadratic Zeeman effect [H* = (?/8)r?sen?(9)].

3.2. About the Zeeman effect in H, H—, He, LiT™, Bet™ etc.

For some magnetic field values ~, in table 7 we present the behavior of the MPP
results for the H atom when the number N of basis functions is increased. Table 8
presents our results (MPP«a) and compares our values to those obtained by severa
authors. Our results coincide to Killingbeck’s values [17], are better than SC1 [27] and
comparable to SC2 [27]. The SC2 results, however, were obtained using the factorized
wave function approach and perturbation theory; these results, unlike ours, are not
variational ones and present oscillations in the energy values when the size of the used
expansion ismodified. Asaconsequence, thereis not acriterion to choose a conclusive
value for F and can occur that £ be lower than the ground-state energy. Such a
problem does not occur with the MPP results since the MPP method is variational (see
the appendix). It is interesting to note, as indicated by Silva and Canuto [27], that the
values of E (see table 8) for the spherical quadratic Zeeman effect are a good upper
bound for the energy values of the nonspherical quadratic Zeeman effect.

In table 9 and figure 1, we consider the spherical quadratic Zeeman effect for the
ion H~. Table 9 presents the behavior of the energy values when the number N of
basis functions is changed. We note that the MPP method converges monotonically
for v = 0.1 au. but presents oscillations for bigger values. These oscillations are
usual for unbound states, also observed in the previous case of the Stark problem;
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Table 9
Spherical quadratic Zeeman effect inthe H™ ion. Behavior of the ground-state energy
(—FE in au.) with the size N of the basis set (23) for some field strength values v
(au.).

v\ N 10 20 35 56 84 120

0.1 0.509503 0.510944 0.511081 0511611 0.511635 0.511818
0.2 0472426 0475911 0473614 0477785 0477937 0.477363
0.3 0424719 0431 0.436 0.432607 0.433 0.42949
0.4 0.371035 0.376553 0.377288  0.376299

0.5 0.312471  0.319813 0.321072 0.318570

-1.0 -

-1.2 1 -

E(&y)

-18 L N N
106 107 108 109
v (Gauss)

Figure 1. Spherical quadratic Zeeman effect in the H™ ion. The behavior of the ground state energy as

afunction of the magnetic field v. —: results of Henry, O’ Connell, Smith, Chanmungam and Rajagopal

(HOSC) [12] for the quadratic Zeeman effect H* = (v2/8)r?sen?(6). --o--: MPP results for the spherical
quadratic Zeeman effect H* = (v2/12)r2.

in fact, the singlet state (L. = 0, M = 0, S = O, parity = positive) is a bound state for
v < 0.05au. only [12]. Infigure 1 our results are compared with the results of Henry et
a. [12] obtained for the quadratic Zeeman effect (nonspherical effect) using variational
procedure and a basis set composed by Slater’s orbitals. Noticing that the ground-state
energy for the spherical quadratic Zeeman effect is an upper bound to the nonspherical
ground state energy, we can conclude from figure 1 that the ours and Henry et a. [12]
results are in good agreement. In tables 10 and 11 we present the results of the
spherical quadratic Zeeman effect for helium-like ions (z = 2,3,...,6). An analysis
of the behavior of the ground-state energy F as a function of the number N of basis
functions shows that the MPP converges monatonically (see table 10, where v =
0.8au.) foralions(z =2,3,...,6). Our results for ground-state energy considering
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Table 10
Spherical quadratic Zeeman effect in the helium-likeions. Analysis of the ground state
energies (—E in a.u.) as afunction of N (number of basis functions) or v = 0.8 a.u.
z is the atomic number (z = 2,3,...,6) and ~ the magnetic field value.

z\ N 10 20 35 56 84 120

277781 2.78427 2.78476 2.78759 278774 2.78823
7.22413 7.22964 7.23004 7.23144 7.23152 7.23192
13.62163  13.62725 1362766 13.62911 13.62918 13.62958
2200619 22.01198 22.01241 22.01391 22.01400 22.01440
32.38610 32.39203 32.39247  32.39402 32.39410  32.39452

OO0 wWN

Table 11
Spherical quadratic Zeeman effect in the helium-like ions. Energy of the fundamental
state (—F in au.). v (au.) is the magnetic field and z the atomic number.

v\ z 2 3 4 5 6
0.1 2900781  7.277931 13653795  21.964667  32.351392
02 2894902  7.275710 13652637 22028552  32.404074
0.3 2.885246 13650709 22027371  32.403277
04 2872000  7.266857 13648012 22025718 32402162
05 2855410  7.260249 13644547 22023594  32.400728
0.6 2835012  7.252210 13640317 22020998  32.398975
0.7 2812349  7.242758 13635326 22017932  32.396905
0.8 2788231  7.231919 13629576 22014397  32.394517
1.0 2726766 ~ 7.206181 13615816 22005922  32.388788

0.1 au. < v < 1.0 au. are presented in table 11. Comparisons with other methods
were not accomplished because we have not found in the literature numerical results
for ions with z > 2. However, as the MPP method has presented very good values for
the H and H™ systems in uniform magnetic and electric fields, our MPP results for the
He-like ions will be of interest to theoretical and experimental studies of these systems.

Finally we will note that to the field strength values that we have considered the
Coulomb interaction is dominating over the magnetic interaction [22]. To more intense
field, however, one must use another basis set with a predominantly magnetic character
in their spatial factor, as the Landau magnetic wave functions [22], for instance. Works
in this direction are in progress and will be published elsewhere. In this context it is
interesting to note that the MPP equations are general and can be applied in principle
to systems with different forms and (small or large) intensity of the potentia V, in
H=Hgy+V.
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Appendix
Here, we will show that equations (14) and (17) are equivalent to
Ep = (Wi[H[W) /(W |W)). (A.1)
For this, we substitute equation (13), i.e.,

W) = Wrlow) (A.2)
in expression (A.1), what leads us to

B = (il sosrwsl> <Zwmwk ) / { <§jl ws\wsl> (Zwms@k )} (A.3)

Then, introducing the unit factor 1 = wy; /wy; a the numerator of equation (A.3) and
summing over k in the denominator, we get

N N N
b= Z W2 (Z Hskal/Wsl> Z w2 (A.4)
s=1 k=1 s=1

or
N
E = Z Hu Wi /Wi, (A.5)
k=1
where we have used that
N
Wi = lwal?, (A.6)
-1
Hk = (@s[Hlox) (A.7)
and
N N
> HueWgr /Wi =) H Wiy /W (A.8)
k=1 k=1

We must note that relation (A.8) is reduced to equation (11) when we use
Hp =K + V?k +Vy, for basis set (15),

and to equation (19) when we use
1 .
H;. = aZKlk + Oleok + =V for basis set (16)
«

Hence, it follows that (A.1) and (A.5) are equivalent equations. Consequently,
eguations (14) and (17) are equivaent to relation (A.1) and our results satisfy the
variation principle with wy,; and « as variational parameters.
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